2024 SUMMARY

COMMUNITY MEDICINE

DR. AHMAD AL-QAWASMI

Biostatistics

• Tabulation

- > Simplifies data for easier understanding and saves space by condensing data meaningfully
- > Facilitates *comparison* between observations, Provides a reference for future studies
- > Aids statistical analysis by *preparing data* systematically

• Classification of Data:

- > Geographical Classification: Based on location (population by regions)
- > Chronological Classification: Based on <u>time</u> (yearly statistics)
- > Qualitative Classification: Based on attributes like gender, education,...
 - ✓ Simple Classification: Based on <u>one</u> attribute
 - ✓ Manifold Classification: Based on <u>multiple</u> attributes with sub-categories
- Methods Summarizing **Qualitative** Data include:
 - > Frequency Distribution: Organizing data into non-overlapping classes.
 - > Relative Frequency Distribution: Fraction of <u>total observations</u> in each class.
 - > Percent Frequency Distribution: Relative frequency multiplied by 100
 - > Bar Graphs & Pie Charts: <u>Graphical</u> representation of categorical data
- Summarizing **Quantitative** Data involves:
 - Recategorization and frequency tabulation
 - > Construction of frequency tables for numeric data.
 - Use of graphs such as histograms, cumulative distributions (ogives), and dot plots
- Steps in Data Tabulation: Find minimum and maximum values, then Calculate the range and decide number and width of classes and lastly construct frequency distribution tables.
- Graphical Representation
 - > Bar Graphs: Display categorical data with <u>separated bars</u>
 - > Pie Charts: Show proportional data as segments of a circle
 - > Histograms: Show quantitative data with <u>adjacent bars</u> (no natural separation between bars)
 - > Ogives: Represent cumulative frequency data
 - > Dot Plots: Represent frequency using dots
- Guidelines for Creating Tables, should include title, column headings, footnotes
- Guidelines for Creating Graphs, should include: Be clear with labeled axes and appropriate scales
 Avoid 3D effects that may mislead interpretation
- Importance of Tables and Graphs
 - > Summarize data concisely for easier interpretation
 - > Save time and reduce word count in research.
 - > Poorly constructed visuals can lead to misinterpretation

- Probability experiment refers to a process with <u>uncertain outcomes</u> (e.g., coin flips, dice rolls)
- Probability distribution shows the possible values of a random variable can take and their associated probabilities
 - > Each probability must be between 0 and 1
 - > The sum of probabilities must equal 1
- Random Variables include:
 - > Discrete Random Variables: <u>Countable values</u> (e.g., number of heads in 10 coin flips).
 - Examples: Number of calls to a help center, number of defective items
 - Common discrete distributions:
 - 1. Binomial Distribution: Fixed trials with two possible outcomes (success/failure)
 - 2. Poisson Distribution: Random events over a fixed time/space (hospital emergencies)
 - > Continuous Random Variables: Infinite possible values within a range (e.g., height, weight).
 - Continuous probability distributions are described using smooth curves, such as histograms and probability density functions (PDFs)
 - ✓ The area under the curve represents total probability (equals 1)
 - ✓ Normal Distribution (Gaussian Curve): Symmetrical, unimodal bell curve centered at the mean (μ) and Defined by mean (μ) and standard deviation (σ)
 - o 68%: Covers data within $\pm 1\sigma$
 - o 95%: Covers data within $\pm 1.96\sigma$
 - o 99.7% : Covers data within $\pm 3\sigma$
 - o 99.99% : Covers data within $\pm 4\sigma$
- Central Limit Theorem (CLT) states that for a sufficiently large sample size:
 - The sample mean approximates the population mean.
 - > Sample distribution approaches <u>normality</u>, regardless of the population's original distribution
 - > Enables making population inferences using sample data.
 - > Works with any distribution if sample size is large enough (typically $n \ge 30$)
 - ✓ If data distribution is symmetric: n≥15n
 - ✓ If data is skewed: n≥30n
 - ✓ If highly skewed: n≥40n
 - > Standard error can be used to calculate sample standard deviation in normal distribution

• The standard normal distribution (Z-distribution): Mean (μ) = 0 , Standard deviation (σ) = 1

- > Z-score allow <u>comparison</u> between datasets
- > Standardization (Z-normalization): is done by this formula
 - ✓ A Z-score of 0 indicates the value is equal to the mean
 - Positive Z-scores indicate values above the mean.
 - Negative Z-scores indicate values below the mean
 - It determines how does the value away from the mean
 - A Z-score of -0.8 indicates a value is 0.8 standard deviations below the mean
 - A Z-score of 2 indicates a value is 2 standard deviations above the mean.
- $z = \frac{(x-\mu)}{\sigma}$

- Research Hypothesis is a clear, testable statement predicting the relationship between variables.
 - > It must involve at least two variables
 - Should suggest a relationship ("more than," "different from")
 - > Must be testable, specific, and predictive
- Null Hypothesis (H₀): Assumes no effect or difference (no relationship, independent)
- Alternative Hypothesis (H1): Assumes an effect or difference exists (relationship, dependent)
 - > If sample data significantly differ from H_0 , it is rejected in favor of H_1 .
 - > If differences are not significant, H₀ cannot be rejected.
- Types of Errors in Hypothesis Testing
 - 1. Type I Error (a):
 - > Occurs when Ho is wrongly rejected (false positive)
 - > Example: Concluding smoking causes cancer when it does not
 - 2. **Type II Error (β)**:
 - > Occurs when Ho is wrongly accepted (false negative)
 - > Example: Concluding smoking has no effect when it actually does.
- Parametric Tests (Assumptions required): Observations must be independent
 - > The dependent variable should be continuous (interval/ratio)
 - > Data should follow a normal distribution (large sample >30)
 - > Groups should have <u>equal variances</u> (homogeneity)
 - > Common parametric tests: T-test, ANOVA (Analysis of Variance)
 - > Advantages: More powerful and flexible, Allow studying multiple variables
- Non-Parametric Tests (Fewer assumptions): Used for nominal or ordinal data.
 - > Distribution-free methods (unknown distribution method) and suitable for small sample sizes
 - > Common non-parametric tests: Chi-square test, Mann-Whitney U test, Kruskal-Wallis test
 - In Chi-square test, data must be in <u>raw frequencies</u>, any observation must <u>have at least a</u> <u>frequency of 5</u> and the total observations must be <u>more than 20</u>
 - > Advantages: No assumptions about population distribution
- If the probability (P-value) of the test statistic is less than or equal to the probability of the alpha error rate (usually 0.05), we reject the null hypothesis and conclude that there is a <u>relationship</u> between the variables (<u>dependent</u>)
- If the probability of the test statistic is **greater than** the probability of the alpha error rate, we fail to reject the null hypothesis. We conclude that there is <u>no relationship</u> between the variables, i.e. they are <u>independent</u>.

Research (Standardization)

- Demography: Study of population size, density, fertility, mortality, and growth
 - Formula for population size dynamics: P2 = P1 + B D + IM EM
- Population doubling time (PDT): Number of years it will take for the population to double in size
 PDT = 70 / annual percent
 - > The population can only increase if the number of births exceeds the number of deaths
- Sources of Demographic Information
 - > Census: costly and slow
 - ✓ Decennial: poll count on <u>100%</u> sample held every 10 years
 - ✓ Midcensus: poll count on 10% sample held every 10 years between censuses
 - > Population registers and vital event registrations
 - > Sample household surveys and governmental/private records
- Population Data Types: Population size, mortality, birth/fertility rates, mobility, and composition
- Age and sex distribution analyzed via population pyramids
 - > Spike: High BR. High DR, low growth rate (under-developed country)
 - > Barrel shape: low BR and low DR at younger ages (developed country)
 - > Wedge shape: high BR and low DR, high growth rate

- Influencing factors od mortality: <u>age structure</u> (main), <u>environment</u>, <u>economic</u> and <u>technological</u> development, <u>medical</u> services
 - > Common causes: infectious diseases (primitive societies), chronic diseases (modern societies)
 - Population health can be compared by death rate, age-specific death rate, standardized death rate (SDR), and standardized mortality ratio (SMR)
- Standardization is used to eliminate demographic differences when comparing populations
 - > Direct Standardization: Uses a reference population to adjust <u>age structure</u> differences
 - Requires <u>age-specific rates</u> and <u>large populations</u>
 - > Indirect Standardization: Uses a standard population's mortality rates to expect <u>deaths</u>.
 - \checkmark Easier to apply when age-specific rates are unavailable
 - Produces SMRs for comparison across different populations.
- Standardized Mortality Ratio (SMR) Calculation
 - > SMR > 100: Higher mortality compared to reference
 - > SMR < 100: Lower mortality compared to reference
 - SMR=120 means that the mortality in the study population is 20% higher than in the reference population
 - SMR=50 means that the mortality in the study population is 50% less than in the reference population.

	Country A	Country B
	Expected deaths	Expected deaths
0-29	0.0012 x 6,000,000 = 7,200	0.0012 × 1,500,000 = 1,800
30-59	0.0036 x 5,500,000 = 19,800	0.0036 x 550,000 = 1,980
60+	0.048 x 2,500,000 = 120,000	0.048 x 120,000 = 5,760
Total expected deaths (E)	147,000	9,540
Total observed deaths (0)	147,000	15,300
Standardised Mortality Ratio 0/E x 100	100	160

 $SMR = \frac{Observed \ deaths}{V} \times 100$

Expected deaths

ACADEMY ACADEMY Ological

- 🚹 Arkan academy
- 👩 Arkanacademy

🛞 www.arkan-academy.com

🕥 +962 790408805